7 research outputs found

    Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements

    Get PDF
    Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 ?? 1020 molecules m???2) given a 1?? error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU)

    The implication of the air quality pattern in South Korea after the COVID-19 outbreak

    Get PDF
    By using multiple satellite measurements, the changes of the aerosol optical depth (AOD) and nitrogen dioxide (NO2) over South Korea were investigated from January to March 2020 to evaluate the COVID-19 effect on the regional air quality. The NO2 decrease in South Korea was found but not significant, which indicates the effects of spontaneous social distancing under the maintenance of ordinary life. The AODs in 2020 were normally high in January, but they became lower starting from February. Since the atmosphere over Eastern Asia was unusually stagnant in January and February 2020, the AOD decrease in February 2020 clearly reveals the positive effect of the COVID-19. Considering the insignificant NO2 decrease in South Korea and the relatively long lifetime of aerosols, the AOD decrease in South Korea may be more attributed to the improvement of the air quality in neighboring countries. In March, regional atmosphere became well mixed and ventilated over South Korea, contributing to large enhancement of air quality. While the social activity was reduced after the COVID-19 outbreak, the regional meteorology should be also examined significantly to avoid the biased evaluation of the social impact on the change of the regional air quality

    Regional Characteristics of NO2 Column Densities from Pandora Observations during the MAPS-Seoul Campaign

    Get PDF
    Vertical column density (VCD) of nitrogen dioxide (NO2) was measured using Pandora spectrometers at six sites on the Korean Peninsula during the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign from May to June 2015. To estimate the tropospheric NO2 VCD, the stratospheric NO2 VCD from the Ozone Monitoring Instrument (OMI) was subtracted from the total NO2 VCD from Pandora. European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wind data was used to analyze variations in tropospheric NO2 VCD caused by wind patterns at each site. The Yonsei/SEO site was found to have the largest tropospheric NO2 VCD (1.49 DU on average) from a statistical analysis of hourly tropospheric NO2 VCD measurements. At rural sites, remarkably low NO2 VCDs were observed. However, a wind field analysis showed that trans-boundary transport and emissions from domestic sources lead to an increase in tropospheric NO2 VCD at NIER/BYI and KMA/AMY, respectively. At urban sites, high NO2 VCD values were observed under conditions of low wind speed, which were influenced by local urban emissions. Tropospheric NO2 VCD at HUFS/Yongin increases under conditions of significant transport from urban area of Seoul according to a correlation analysis that considers the transport time lag. Significant diurnal variations were found at urban sites during the MAPS-Seoul campaign, but not at rural sites, indicating that it is associated with diurnal patterns of NO2 emissions from dense traffic

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    ????????????????????? ????????? GEMS ?????????????????? ?????? ????????? ??????

    No full text
    : To estimate errors in GEMS retrievals for bromine monoxide (BrO) total vertical column densities (VCDs), we perform a sensitivity test using synthetic spectra generated by a radiative transfer model. Hourly synthetic data are produced for 00-07 UTC on the first day of every month in Jul 2013- Jun 2014. Solution errors estimated by the optimal estimation method tend to decrease with increasing air mass factors (AMFs) but increase when AMFs are larger than 5. Interference errors induced by formaldehyde (HCHO) absorption appear to be larger with smaller BrO AMFs. Total BrO retrieval errors estimated by combining solution and interference errors show an average of 26.74??30.18% for all data samples and 60.39??133.78% for those with solar zenith angles higher than 80??. Due to interfering spectral features and measurement errors not considered in this study, errors in BrO retrievals from actual GEMS measurements may have different magnitudes from our estimates. However, the variability of errors assessed in this study is still expected to appear in the actual BrO retrievals

    BrO retrievals from the Geostationary Environment Monitoring Spectrometer: Early results

    No full text
    The Geostationary Environment Monitoring Spectrometer (GEMS), launched in February 2020, is a spaceborne spectrometer providing hourly measurements of hyperspectral ultraviolet-visible radiances for the first time from space. This study presents early results of retrieving bromine monoxide (BrO) columns from GEMS measurements. The retrieval algorithm is based on the direct fitting method developed in the Smithsonian Astrophysical Observatory (SAO). We optimize the spectral fit by examining biases in slant column densities (SCDs), SCD uncertainties, fitting residuals, and correlations between fitting parameters obtained by different fitting windows. The optimized retrievals represent the diurnal variability of BrO columns over Asia, which has not been observed from space so far. Considering the role of halogens in the tropospheric ozone chemistry, we expect the GEMS BrO retrievals will contribute to a better understanding of ozone pollution in Asia. Besides, we demonstrate that GEMS observed enhancement of BrO columns over the Nishinoshima volcano in Japan during its eruption in August 2020. These results imply that the GEMS BrO product will also contribute to the investigation of volcanic activities in Asia, especially through the synergistic use with the GEMS SO2 product
    corecore